40 research outputs found

    Computing (R, S) policies with correlated demand

    Get PDF
    This paper considers the single-item single-stocking non-stationary stochastic lot-sizing problem under correlated demand. By operating under a nonstationary (R, S) policy, in which R denote the reorder period and S the associated order-up-to-level, we introduce a mixed integer linear programming (MILP) model which can be easily implemented by using off-theshelf optimisation software. Our modelling strategy can tackle a wide range of time-seriesbased demand processes, such as autoregressive (AR), moving average(MA), autoregressive moving average(ARMA), and autoregressive with autoregressive conditional heteroskedasticity process(AR-ARCH). In an extensive computational study, we compare the performance of our model against the optimal policy obtained via stochastic dynamic programming. Our results demonstrate that the optimality gap of our approach averages 2.28% and that computational performance is good

    Mathematical programming heuristics for nonstationary stochastic inventory control

    Get PDF
    This work focuses on the computation of near-optimal inventory policies for a wide range of problems in the field of nonstationary stochastic inventory control. These problems are modelled and solved by leveraging novel mathematical programming models built upon the application of stochastic programming bounding techniques: Jensen's lower bound and Edmundson-Madanski upper bound. The single-item single-stock location inventory problem under the classical assumption of independent demand is a long-standing problem in the literature of stochastic inventory control. The first contribution hereby presented is the development of the first mathematical programming based model for computing near-optimal inventory policy parameters for this problem; the model is then paired with a binary search procedure to tackle large-scale problems. The second contribution is to relax the independence assumption and investigate the case in which demand in different periods is correlated. More specifically, this work introduces the first stochastic programming model that captures Bookbinder and Tan's static-dynamic uncertainty control policy under nonstationary correlated demand; in addition, it discusses a mathematical programming heuristic that computes near-optimal policy parameters under normally distributed demand featuring correlation, as well as under a collection of time-series-based demand process. Finally, the third contribution is to consider a multi-item stochastic inventory system subject to joint replenishment costs. This work presents the first mathematical programming heuristic for determining near-optimal inventory policy parameters for this system. This model comes with the advantage of tackling nonstationary demand, a variant which has not been previously explored in the literature. Unlike other existing approaches in the literature, these mathematical programming models can be easily implemented and solved by using off-the-shelf mathematical programming packages, such as IBM ILOG optimisation studio and XPRESS Optimizer; and do not require tedious computer coding. Extensive computational studies demonstrate that these new models are competitive in terms of cost performance: in the case of independent demand, they provide the best optimality gap in the literature; in the case of correlated demand, they yield tight optimality gap; in the case of nonstationary joint replenishment problem, they are competitive with state-of-the-art approaches in the literature and come with the advantage of being able to tackle nonstationary problems

    Resource Scheduling Strategy for Performance Optimization Based on Heterogeneous CPU-GPU Platform

    Get PDF
    In recent years, with the development of processor architecture, heterogeneous processors including Center processing unit (CPU) and Graphics processing unit (GPU) have become the mainstream. However, due to the differences of heterogeneous core, the heterogeneous system is now facing many problems that need to be solved. In order to solve these problems, this paper try to focus on the utilization and efficiency of heterogeneous core and design some reasonable resource scheduling strategies. To improve the performance of the system, this paper proposes a combination strategy for a single task and a multi-task scheduling strategy for multiple tasks. The combination strategy consists of two sub-strategies, the first strategy improves the execution efficiency of tasks on the GPU by changing the thread organization structure. The second focuses on the working state of the efficient core and develops more reasonable workload balancing schemes to improve resource utilization of heterogeneous systems. The multi-task scheduling strategy obtains the execution efficiency of heterogeneous cores and global task information through the processing of task samples. Based on this information, an improved ant colony algorithm is used to quickly obtain a reasonable task allocation scheme, which fully utilizes the characteristics of heterogeneous cores. The experimental results show that the combination strategy reduces task execution time by 29.13% on average. In the case of processing multiple tasks, the multi-task scheduling strategy reduces the execution time by up to 23.38% based on the combined strategy. Both strategies can make better use of the resources of heterogeneous systems and significantly reduce the execution time of tasks on heterogeneous systems

    Computing non-stationary (s,S) policies using mixed integer linear programming

    Get PDF
    This paper addresses the single-item single-stocking location stochastic lot sizing problem under the (s,S)(s, S) policy. We first present a mixed integer non-linear programming (MINLP) formulation for determining near-optimal (s,S)(s, S) policy parameters. To tackle larger instances, we then combine the previously introduced MINLP model and a binary search approach. These models can be reformulated as mixed integer linear programming (MILP) models which can be easily implemented and solved by using off-the-shelf optimisation software. Computational experiments demonstrate that optimality gaps of these models are around 0.3%0.3\% of the optimal policy cost and computational times are reasonable

    Learning Robust Visual-Semantic Embedding for Generalizable Person Re-identification

    Full text link
    Generalizable person re-identification (Re-ID) is a very hot research topic in machine learning and computer vision, which plays a significant role in realistic scenarios due to its various applications in public security and video surveillance. However, previous methods mainly focus on the visual representation learning, while neglect to explore the potential of semantic features during training, which easily leads to poor generalization capability when adapted to the new domain. In this paper, we propose a Multi-Modal Equivalent Transformer called MMET for more robust visual-semantic embedding learning on visual, textual and visual-textual tasks respectively. To further enhance the robust feature learning in the context of transformer, a dynamic masking mechanism called Masked Multimodal Modeling strategy (MMM) is introduced to mask both the image patches and the text tokens, which can jointly works on multimodal or unimodal data and significantly boost the performance of generalizable person Re-ID. Extensive experiments on benchmark datasets demonstrate the competitive performance of our method over previous approaches. We hope this method could advance the research towards visual-semantic representation learning. Our source code is also publicly available at https://github.com/JeremyXSC/MMET

    Mining the candidate genes of rice panicle traits via a genome-wide association study

    Get PDF
    Panicle traits are important for improving the panicle architecture and grain yield of rice. Therefore, we performed a genome-wide association study (GWAS) to analyze and determine the genetic determinants of five panicle traits. A total of 1.29 million single nucleotide polymorphism (SNP) loci were detected in 162 rice materials. We carried out a GWAS of panicle length (PL), total grain number per panicle (TGP), filled grain number per panicle (FGP), seed setting rate (SSR) and grain weight per panicle (GWP) in 2019, 2020 and 2021. Four quantitative trait loci (QTLs) for PL were detected on chromosomes 1, 6, and 9; one QTL for TGP, FGP, and GWP was detected on chromosome 4; two QTLs for FGP were detected on chromosomes 4 and 7; and one QTL for SSR was detected on chromosome 1. These QTLs were detected via a general linear model (GLM) and mixed linear model (MLM) in both years of the study period. In this study, the genomic best linear unbiased prediction (BLUP) method was used to verify the accuracy of the GWAS results. There are nine QTLs were both detected by the multi-environment GWAS method and the BLUP method. Moreover, further analysis revealed that three candidate genes, LOC_Os01g43700, LOC_Os09g25784, and LOC_Os04g47890, may be significantly related to panicle traits of rice. Haplotype analysis indicated that LOC_Os01g43700 and LOC_Os09g25784 are highly associated with PL and that LOC_Os04g47890 is highly associated with TGP, FGP, and GWP. Our results offer essential genetic information for the molecular improvement of panicle traits. The identified candidate genes and elite haplotypes could be used in marker-assisted selection to improve rice yield through pyramid breeding
    corecore